Wholesale Auto Body Parts

HOME

truck parts

truck parts PARTS

SEARCH

QUALITY PARTS

SHIPPING

ABOUT US

QUOTES

CONTACT US

TRACKING

SITES

Auto Body Parts Online - Offering Aftermarket/Replacement Car & truck parts Body Parts at Wholesale Price
Pay Your Your Parts Here!CHECKOUT / VIEW CART HERE
Auto Articles
Auto Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Car Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Truck Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Body Parts
 
Headlights
Acura
Alfaromeo
Audi
BMW
Cadillac
Chevy
Chrysler
Dodge
Eagle
Ford
Geo
GMC
Honda
Hyndai
Infiniti
Isuzu
Jaguar
Jeep
Kai
Landrover
Lexus
Lincoln
Mazda
Mercedes
Mercury
Merkur
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Saab
Subaru
Suzuki
Toyota
Volkswagen
Volvo
 
Taillights
Acura
Audi
BMW
Buick
Cadillac
Chevy
Chrysler
Geo
GMC
Honda
Infiniti
Isuzu
Jeep
Kai
Landrover
Lexus
Mazda
Mercedes
Mercury
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Porsche
Saab
Saturn
Subaru
Suzuki
Toyota
Volkswagen
Volvo
 
Bumpers
Acura
Audi
BMW
Buick
Cadillac
Chevy
Chrysler
Dodge
Eagle
Ford
Geo
GMC
Honda
Hyndai
Infiniti
Isuzu
Jeep
Kai
Lexus
Lincoln
Mazda
Mercedes
Mercury
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Renault
Saturn
Subaru
Suzuki
Toyota
Volkswagen
Volvo


Carburetor

The carburetor works on Bernoulli's principle: the faster air moves, the lower its static pressure, and the higher its dynamic pressure.

A carburetor is a device that blends air and fuel for an internal combustion engine. It was invented by Karl Benz before 1885 and patented in 1886. To carburetor means to combine with carbon. In fuel chemistry, the term has the more specific meaning of increasing the carbon (and therefore energy) content of a fuel by mixing it with a volatile hydrocarbon.

Principles

Beginning in the 1930s, downdraft carburetors were the most popular type for truck parts use in the United States. In Europe, the side draft carburetors replaced downdraft as free space in the engine bay decreased and the use of the SU-type carburetor (and similar units from other manufacturers) increased. Some small propeller-driven aircraft engines still use the updraft carburetor design, however many use more modern designs such as the Constant Velocity (CV) Bing(TM) carburetor.

The accelerator linkage does not directly control the flow of liquid fuel. Instead, it actuates carburetor mechanisms which meter the flow of air being pulled into the engine. The speed of this flow, and therefore its pressure, determines the amount of fuel drawn into the airstream.

Most carbureted (as opposed to fuel-injected) engines have a single carburetor, though some engines use multiple carburetors. Older engines used updraft carburetors, where the air enters from below the carburetor and exits through the top. This had the advantage of never "flooding" the engine truck parts, as any liquid fuel droplets would fall out of the carburetor instead of into the intake manifold; it also lent itself to use of an oil bath air cleaner, where a pool of oil below a mesh element below the carburetor is sucked up into the mesh and the air is drawn through the oil covered mesh; this was an effective system in a time when paper air filters did not exist.


Beginning in the 1930s, downdraft carburetors were the most popular type for truck parts use in the United States. In Europe, the side draft carburetors replaced downdraft as free space in the engine bay decreased and the use of the SU-type carburetor (and similar units from other manufacturers) increased. Some small propeller-driven aircraft engines still use the updraft carburetor design, however many use more modern designs such as the Constant Velocity (CV) Bing(TM) carburetor.

Operation

* Fixed-venturi, in which the varying air velocity in the venturi alters the fuel flow; this architecture is employed in most downdraft carburetors found on American and some Japanese cars
* Variable-venturi, in which the fuel jet opening is varied by the slide. In "constant depression" carburetors, this is done by a vacuum operated piston connected to a tapered needle which slides inside the fuel jet. A simpler version exists, most commonly found on small motorcycles and dirt bikes, where the slide and needle is directly controlled by the throttle position. These types of carburetors are commonly equipped with accelerator pumps to make up for a particular shortcoming of this design. The most common variable venturi (constant depression) type carburetor is the side draft SU carburetor and similar models from Hitachi, Zenith-Stromberg and other makers. Other similar designs have been used on some European and a few Japanese automobiles. These carburetors are also referred to as "constant velocity" or "constant vacuum" carburetors. An interesting variation was Ford's VV (Variable Venturi) carburetor, which was essentially a fixed venturi carburetor with one side of the venturi hinged and movable to give a narrow throat at low rpm and a wider throat at high rpm. This was designed to provide good mixing and airflow over a range of engine speeds, though the VV carburetor proved problematic in service.

Under all engine operating conditions, the carburetor must:

* Measure the airflow of the engine
* Deliver the perfect amount of fuel to keep the fuel/air mixture in the proper range (adjusting for factors such as temperature)
* Mix the two finely and evenly

This job would be simple if air and gasoline (petrol) were ideal fluids; in practice, however, their deviations from ideal behavior due to viscosity, fluid drag, inertia, etc. require a great deal of complexity to compensate for exceptionally high or low engine speeds. A carburetor must provide the proper fuel/air mixture across a wide range of ambient temperatures, atmospheric pressures, engine speeds and loads, and centrifugal forces:
* Cold start
* Hot start
* Idling or slow-running
* Acceleration
* High speed / high power at full throttle
* Cruising at part throttle (light load)

Modern carburetors are required to do this while maintaining low rates of exhaust emissions.


Main open-throttle circuit

As the throttles are progressively opened, the manifold vacuums are lessened since there are less restriction on the airflow, reducing the flow through the idle and off-idle circuits. This is where the venturi shape of the carburetor throat comes into play, due to Bernoulli's principle (i.e., as the velocity increases, pressure falls). The venturi raises the air velocity, and this high speed and thus low pressure sucks fuel into the airstream through a nozzle or nozzles located in the center of the venturi. Sometimes one or more additional booster venturis are placed coaxially within the primary venturi to increase the effect.

As the throttle is closed, the airflow through the venturi drops until the lowered pressure is insufficient to maintain this fuel flow, and the idle circuit takes over again, as described above.

Bernoulli's principle is ineffective at idle or slow running and in the very small carburetors of the smallest model engines. Small model engines have flow restrictions ahead of the jets to reduce the pressure enough to suck the fuel into the air flow. Similarly the idle and slow running jets of large carburetors are placed after the throttle valve where the pressure is reduced partly by viscous drag, rather than by Bernoulli's principle. The most common rich mixture device for starting cold engines was the choke, which works on the same principle.

Power valve

For open throttle operation a richer mixture will produce more power, prevent detonation, and keep the engine cooler. These are usually addressed with a spring-loaded "power valve", which is held shut by engine vacuum. As the throttle opens up, the vacuum decreases and the spring opens the valve to let more fuel into the main circuit. On two-stroke engines, the operation of the power valve is the reverse of normal - it is normally "on" and at a set rpm it is turned "off". It is activated at high rpm to extend the engine's rev range, capitalizing on a two-stroke's tendency to rev higher momentarily when the mixture is lean.

Alternative to employing a power valve, the carburetor may utilize a metering rod or step-up rod system to richen the fuel mixture under high-demand conditions. Such systems were originated by Carter Carburetor in the 50's for the primary two venturis of their four barrel carburetors, and step-up rods were widely used on most 1-, 2-, and 4-barrel Carter carburetors through the end of production in the 1980s. The step-up rods are tapered at the bottom end, which extends into the main metering jets. The tops of the rods are connected to a vacuum piston and/or a mechanical linkage which lifts the rods out of the main jets. When the step-up rod is lowered into the main jet, it restricts the fuel flow. When the step-up rod is raised out of the jet, more fuel can flow through it. In this manner, the amount of fuel delivered is tailored to the transient demands of the engine. Some 4-barrel carburetors use metering rods only on the primary two venturis, but some use them on both primary and secondary circuits, as in the Rochester Quadra jet.

Accelerator pump

The greater inertia of liquid gasoline, compared to air, means that if the throttle is suddenly opened, the airflow will increase more rapidly than the fuel flow, causing a temporary "lean" condition which causes the engine to "stumble" under acceleration (the opposite of what is normally intended when the throttle is opened). This is remedied by the use of a small mechanical pump, usually either a plunger or diaphragm type actuated by the throttle linkage, which propels a small amount of gasoline through a jet, wherefrom it is injected into the carburetor throat. This extra shot of fuel counteracts the transient lean condition on throttle tip-in. Most accelerator pumps are adjustable for volume and/or duration by some means. Eventually the seals around the moving parts of the pump wear such that pump output is reduced; this reduction of the accelerator pump shot causes stumbling under acceleration until the seals on the pump are renewed.

The accelerator pump is also used to prime the engine with fuel prior to a cold start. Excessive priming, like an improperly-adjusted choke, can cause flooding.

Choke

When the engine is cold, fuel vaporizes less readily and tends to condense on the walls of the intake manifold, starving the cylinders of fuel and making the engine difficult to start; thus, a richer mixture (more fuel to air) is required to start and run the engine until it warms up. A richer mixture is also easier to ignite.

To provide the extra fuel, a choke is typically used; this is a device that restricts the flow of air at the entrance to the carburetor, before the venturi. With this restriction in place, extra vacuum is developed in the carburetor barrel, which pulls extra fuel through the main metering system to supplement the fuel being pulled from the idle and off-idle circuits. This provides the rich mixture required to sustain operation at low engine temperatures.

Moreover, the choke is connected to a cam (the fast idle cam) or other such device which prevents the throttle plate from closing fully while the choke is in operation. This causes the engine to idle at a higher speed. Fast idle serves as a way to help the engine warm up quickly, and give a more stable idle while cold by increasing airflow throughout the intake system which helps to better atomize the cold fuel.

In most carbureted cars produced from the mid 1960s onward (mid 1950s in the United States) it is usually automatically controlled by a thermostat employing a bimetallic spring, which is exposed to engine heat. This heat may be transferred to the choke thermostat via simple convection, via engine coolant, or via air heated by the exhaust. More recent designs use the engine heat only indirectly. A choke unloaded is a linkage arrangement that forces the choke open against its spring when the vehicle's accelerator is moved to the end of its travel. This provision allows a "flooded" engine to be cleared out so that it will start.

Typically used on small engines, notably motorcycles, enricheners work by opening a secondary fuel circuit below the throttle valves. This circuit works exactly like the idle circuit, and when engaged it simply supplies extra fuel when the throttle is closed.

Fuel supply

Float chamber

To ensure a ready mixture, the carburetor has a "float chamber" (or "bowl") that contains a quantity of fuel at near-atmospheric pressure, ready for use. These reservoirs are constantly replenished with fuel supplied by a fuel pumps. The correct fuel level in the bowl is maintained by means of a float controlling an inlet valve, in a manner very similar to that employed in toilet tanks. As fuel is used up, the float drops, opening the inlet valve and admitting fuel. As the fuel level rises, the float rises and closes the inlet valve. The level of fuel maintained in the float bowl can usually be adjusted, whether by a setscrew or by something crude such as bending the arm to which the float is connected. This is usually a critical adjustment, and the proper adjustment is indicated by lines inscribed into a window on the float bowl, or a measurement of how far the float hangs below the top of the carburetor when disassembled, or similar. Floats can be made of different materials, such as sheet brass soldered into a hollow shape, or of plastic; hollow floats can spring small leaks and plastic floats can eventually become porous and lose their flotation; in either case the float will fail to float, fuel level will be too high, and the engine will not run well unless the float is replaced. Conversely, as the fuel evaporates from the float bowl, it leaves sediment, residue, and varnishes behind, which clog the passages and can interfere with the float operation. This is particularly a problem in automobiles operated for only part of the year and left to stand with full float chambers for months at a time; commercial fuel stabilizer additives are available that reduce this problem.

Usually, special vent tubes allow air to escape from the chamber as it fills or enter as it empties, maintaining atmospheric pressure within the float chamber; these usually extend into the carburetor throat. Placement of these vent tubes can be somewhat critical to prevent fuel from sloshing out of them into the carburetor, and sometimes they are modified with longer tubing. This is not necessary in installations where the carburetor is mounted upstream of the supercharger, which is for this reason the more frequent system. However, this results in the supercharger being filled with compressed fuel/air mixture, with a strong tendency to explode should the engine backfire; this type of explosion is frequently seen in drag races, which for safety reasons now incorporate pressure releasing blow-off plates on the intake manifold, breakaway bolts holding the supercharger to the manifold, and shrapnel-catching ballistic nylon blankets surrounding the superchargers.

Instead, a diaphragm chamber is used. A flexible diaphragm forms one side of the fuel chamber and is arranged so that as fuel is drawn out into the engine the diaphragm is forced inward by ambient air pressure. The diaphragm is connected to the needle valve and as it moves inward it opens the needle valve to admit more fuel, thus replenishing the fuel as it is consumed. As fuel is replenished the diaphragm moves out due to fuel pressure and a small spring, closing the needle valve. A balanced state is reached which creates a steady fuel reservoir level, which remains constant in any orientation.

Multiple carburetor barrels

Colombo Type 125 "Testa Rossa" engine in a 1961 Ferrari 250TR Spyder with six Weber two-barrel carburetors inducting air through 12 air horns; one individually adjustable barrel for each cylinder.

While basic carburetors have only one venturi, many carburetors have more than one venturi, or "barrel". Two barrel and four barrel configurations are commonly used to accommodate the higher air flow rate with large engine displacement. Multi-barrel carburetors can have non-identical primary and secondary barrel(s) of different sizes and calibrated to deliver different air/fuel mixtures; they can be actuated by the linkage or by engine vacuum in "progressive" fashion, so that the secondary barrels do not begin to open until the primaries are almost completely open. These advantages may not be important in high-performance applications where part throttle operation is irrelevant, and the primaries and secondaries may all open at once, for simplicity and reliability; also, V configuration engines, with two cylinder banks fed by a single carburetor, may be configured with two identical barrels, each supplying one cylinder bank. In the widely seen V8 and 4-barrel carburetor combination, there are often two primary and two secondary barrels.

Carburetor adjustment

Too much fuel in the fuel-air mixture is referred to as too rich, and not enough fuel is too lean. The mixture is normally adjusted by one or more needle valves on an automotive carburetors, or a pilot-operated lever on piston-engined aircraft (since mixture is air density (altitude) dependent). The (stoichiometric) air to gasoline ratio is 14.7:1, meaning that for each weight unit of gasoline, 14.7 units of air will be consumed. Stoichiometric mixture are different for various fuels other than gasoline.

Ways to check carburetor mixture adjustment include: measuring the carbon monoxide, hydrocarbon, and oxygen content of the exhaust using a gas analyzer, or directly viewing the color of the flame in the combustion chamber through a special glass-bodied spark plug sold under the name "Colortune" for this purpose. The flame colour of stoichiometric burning is described as a "bunsen blue", turning to yellow if the mixture is rich and whitish-blue if too lean.

Many American-market vehicles used special "feedback" carburetors that could change the base mixture in response to signals from an exhaust gas oxygen sensor. These were mainly used to save costs but eventually disappeared as falling hardware prices and tighter emissions standards made fuel injection a standard item.

Catalytic carburetors

The catalytic carburetor mixes fuel fumes with water and air in the presence of heated catalysts such as nickel or platinum. This breaks the fuel down into methane, alcohols, and other lighter-weight fuels. The original catalytic carburetor was introduced to permit farmers to run tractors from modified and enriched kerosene. While catalytic carburetors were made commercially available in the early 1930s, two major factors limited their widespread public use. First, the addition of additives to commercial gasoline made it unsuitable for use in engines with catalytic carburetors. Tetra-ethyl lead was introduced in 1932 to raise gasoline's resistance to engine knock, thereby permitting the use of higher compression ratios. Second, the economic advantage of using kerosene over gasoline faded in the 1930s, eliminating the catalytic carburetor's primary advantage.

Manufacturers

Some manufacturers of carburetors are/were:

* The AMAL Carburetter Company, supplier to the British motorcycle industry[1]
* Argelite, producer of Holley and Magneti Marelli carburetors for the Argentine market
* Autolite, a division of the Ford Motor Company from 1967 to 1973.
* Bendix Stromberg and Bendix Technico carburetors, used on vehicles made by Chrysler, IHC, Ford, GM, AMC, and Studebaker
* Bing Carburetor (used on motorcycles, mopeds, aircraft, boats)
* Briggs & Stratton, small engines (e.g. powered mowers)
* Carter carburetor, (used on numerous makes of vehicles, including those made by Chrysler, IHC, Ford, GM, AMC, and Studebaker, as well as on industrial and agricultural equipment and small engines
* Dell'Orto carburetors from Italy, used on cars and motorcycles
* Edelbrock performance carburetors
* Hitachi, Ltd. Hitachi carburetors, found on Japanese automobiles
* Holley, with usage as broad as Carter and Weber.
* Keihin, also common on Japanese and other motorcycles, a keiretsu group company affiliated with Honda
* Lectron carburators
* Mikuni, common on Japanese motorcycles, especially in the 1980s
* Motec Engineering - high performance updraft carburetors
* Pierburg carburetor, in Volvo, VW and Audi
* Rochester Products Division, USA (A General Motors subsidiary; also sold Weber/Magneti Marelli carburetors under license)
* Solex carburetor
* SU carburetor widely used on British Commonwealth and European-designed vehicles, presently manufactured by Burlen Fuel Systems
* Tecumseh Products Company, small engines (e.g. lawn mowers, snow blowers)
* Villiers UK Motorcycle and small engines
* Walbro and Tillotson carburetors for small engines Info
* Weber carburetor, Italian, owned by Magneti Marelli
* Zenith UK, Also produced the Zenith-Stromberg Carburetors

 

© Copyright: All database of truck parts, truck parts, truck parts parts and pictures belong to Auto Body Parts Online. Terms & Conditions
Technical questions? Contact the
Webmaster
Powered by Auto Body Parts Online