Wholesale Auto Body Parts

HOME

AUTO PARTS

TRUCK PARTS

SEARCH

QUALITY PARTS

SHIPPING

ABOUT US

QUOTES

CONTACT US

TRACKING

SITES

Auto Body Parts Online - Offering Aftermarket/Replacement Car & Truck Body Parts at Wholesale Price
Pay Your Your Parts Here!CHECKOUT / VIEW CART HERE
Auto Articles
Auto Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Car Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Truck Parts
Air Filters
Alternator
Battery
Brake
Bumpers
CamShaft
Carburetor
Clutch
Connecting Rod
Crank Shaft
Cylindrical Head
Differential
Distrubutor
Door
Drive Shaft
Electronics Fuel Injection
Exhaust Gas Reciculation
Exhaust Pipe
Fuel Pump
Fuse
Gearbox
Headlights
Oilpump
Piston Ring
Piston
Rank and Pinion
Radiator
Rocketarm
Seat
Self Starter
Spark Plug
Speedmeter
Universal Join
Water Pump
 
Body Parts
 
Headlights
Acura
Alfaromeo
Audi
BMW
Cadillac
Chevy
Chrysler
Dodge
Eagle
Ford
Geo
GMC
Honda
Hyndai
Infiniti
Isuzu
Jaguar
Jeep
Kai
Landrover
Lexus
Lincoln
Mazda
Mercedes
Mercury
Merkur
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Saab
Subaru
Suzuki
Toyota
Volkswagen
Volvo
 
Taillights
Acura
Audi
BMW
Buick
Cadillac
Chevy
Chrysler
Geo
GMC
Honda
Infiniti
Isuzu
Jeep
Kai
Landrover
Lexus
Mazda
Mercedes
Mercury
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Porsche
Saab
Saturn
Subaru
Suzuki
Toyota
Volkswagen
Volvo
 
Bumpers
Acura
Audi
BMW
Buick
Cadillac
Chevy
Chrysler
Dodge
Eagle
Ford
Geo
GMC
Honda
Hyndai
Infiniti
Isuzu
Jeep
Kai
Lexus
Lincoln
Mazda
Mercedes
Mercury
Mitsubishi
Nissan
Oldmobile
Plymouth
Pontiac
Renault
Saturn
Subaru
Suzuki
Toyota
Volkswagen
Volvo

 

Electric fuel pump

In many modern cars the fuel pump is usually electric and located inside of the fuel tank. The pump creates positive pressure in the fuel lines, pushing the gasoline to the engine. The higher gasoline pressure raises the boiling point. Placing the pump in the tank puts the equipments least likely to handle gasoline vapor well farthest from the engine, submersed in cool liquid. Another benefit to placing the pump inside the tank is that it is less likely to start a fire. Though electrical components (such as a fuel pump) can spark and ignite fuel vapors, liquid fuel will not explode and therefore submerging the pump in the tank is one of the safest places to put it. In most cars, the fuel pump delivers a constant flow of gasoline to the engine; fuel not used is returned to the tank. This further reduces the chance of the fuel boiling, since it is never kept to be controlled via pulse-width modulation of the pump voltage. This increases the life of the pump, allows a smaller and lighter device to be used, and reduces electrical load.

Some cars with an electronic control unit have safety logic that will shut the electric fuel pump off even if the ignition is "on" if there is no oil pressure, either due to engine bearing damage or a non stalled engine, e.g. in a car accident. In case of an accident this will also prevent fuel leakage from any ruptured fuel line. In many other cars have an additional roll over valve that will shut off the fuel pump in case the car rolls over. Some Ford cars also have a fuel cut-off switch that will simply shut power down to the electric fuel pump relay in the case of a collision.

Fuel pump

A fuel pump is a frequently essential auto parts on a vechicle or other internal combustion engined device. Many engines do not require any fuel pump at all, requiring only gravity to feed fuel from the fuel tank through a line or hose to the engine. But in non-gravity feed designs, fuel has to be pumped from the fuel tank to the engine and delivered under low pressure to the carburetor or under high pressure to the fuel injection system. Often, carbureted engines use low pressure mechanical pumps that are mounted outside the fuel tank, whereas fuel injected engines often use electric fuel pumps that are mounted inside the fuel tank.

Mechanical pump

Prior to the widespread adoption of electronic fuel injection, most carbureted automobile engines used mechanical fuel pumps to transfer fuel from the fuel tank into the fuel bowls of the carburetor. Most mechanical fuel pumps are diaphragm pumps, which are a type of positive displacement pump. Diaphragm pumps contain a pump chamber whose volume is increased or reduce by the flexing of a flexible diaphragm, similar to the action of a piston pump. Specific designs vary, but in the most common configuration, these pumps are typically bolted onto the engine block or head, and the engine's camshaft has an extra eccentric lobe that operates a lever on the pump, either directly or via a pushrod, by pulling the diaphragm to bottom dead center. The volume inside the pump chamber increased, causing fuel to be drawn into the pump from the tank. The return motion of the diaphragm to top dead center is accomplished by a diaphragm spring, during which the fuel in the pump chamber is squeezed through the outlet port and into the carburetor. The pressure at which the fuel is expelled from the pump is thus limited (and therefore regulated) by the force applied by the diaphragm spring.

The carburetor typically auto parts which contains a float bowl into which the expelled fuel is pumped. When the fuel level in the float bowl exceeds a certain level, the inlet valve to the carburetor will close, preventing the fuel pump from pumping more fuel into the carburetor. Any remaining fuel inside the pump chamber is trapped, unable to exit through the inlet port or outlet port. The diaphragm will continue to agreed pressure to the diaphragm, and during the subsequent rotation, the eccentric will pull the diaphragm back to bottom dead center, where it will remain until the inlet valve to the carburetor reopens.

The pump creates negative pressure to draw the fuel through the lines. However, the low pressure both the pump and the fuel tank, in combination with heat from the engine and/or hot weather, can cause the fuel to vaporize in the supply line. This condition is different from vapor lock, where high engine heat on the pressured side of the pump boils the fuel in the lines, also starving the engine of enough fuel to run. Mechanical automotive fuel pumps generally do not generate much more than 10-15 psi, which is more than enough for most carburetors.



 

 

© Copyright: All database of auto parts, car parts, truck parts and pictures belong to Auto Body Parts Online. Terms & Conditions
Technical questions? Contact the
Webmaster
Powered by Auto Body Parts Online